Decía en un post anterior de esta serie que existen algunos métodos para intentar "romper" el cifrado RSA sin necesidad de factorizar el módulo para hallar sus dos factores primos. Como comenté en ese post , el ataque utilizando el cifrado cíclico nos podría permitir "romper" el secreto que se pretende guardar (en teoría se puede obtener el mensaje en claro), aunque no obtendríamos la clave privada del receptor. Pero, ¿existen otros métodos de criptoanálisis al cifrado RSA que teniendo en cuenta sólo información pública del destinatario (la clave pública con la que se cifran los mensajes en claro: el exponente y el módulo) podrían revelarnos su clave privada?. La respuesta es, otra vez y en teoría, sí , y, además, ni siquiera haría falta interceptar un criptograma, como sí que es necesario en el caso del ataque mediante cifrado cíclico. Éste es el caso de un ataque basado en la paradoja del cumpleaños . Veamos un ataque de este tipo con el ejemplo que veng...